Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 32(24): 6924-6938, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37873915

RESUMEN

Environmental circumstances shaping soil microbial communities have been studied extensively. However, due to disparate study designs, it has been difficult to resolve whether a globally consistent set of predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 of those containing regional plant productivity gradients) to examine (i) if similar abiotic or biotic factors predict both large-scale (across sites) and regional-scale (within sites) patterns in bacterial and fungal community composition, and (ii) if microbial community composition differs consistently at two levels of regional plant productivity (low vs. high). Our results revealed that bacteria were associated with particular soil properties (such as base saturation) and both bacteria and fungi were associated with plant community composition across sites and within the majority of sites. Moreover, a discernible microbial community signal emerged, clearly distinguishing high and low-productivity soils across different grasslands independent of their location in the world. Hence, regional productivity differences may be typified by characteristic soil microbial communities across the grassland biome. These results could encourage future research aiming to predict the general effects of global changes on soil microbial community composition in grasslands and to discriminate fertile from infertile systems using generally applicable microbial indicators.


Asunto(s)
Pradera , Microbiota , Microbiología del Suelo , Microbiota/genética , Hongos/genética , Bacterias/genética , Plantas/microbiología , Suelo
2.
Science ; 349(6245): 302-5, 2015 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-26185249

RESUMEN

The search for predictions of species diversity across environmental gradients has challenged ecologists for decades. The humped-back model (HBM) suggests that plant diversity peaks at intermediate productivity; at low productivity few species can tolerate the environmental stresses, and at high productivity a few highly competitive species dominate. Over time the HBM has become increasingly controversial, and recent studies claim to have refuted it. Here, by using data from coordinated surveys conducted throughout grasslands worldwide and comprising a wide range of site productivities, we provide evidence in support of the HBM pattern at both global and regional extents. The relationships described here provide a foundation for further research into the local, landscape, and historical factors that maintain biodiversity.


Asunto(s)
Biodiversidad , Pradera , Desarrollo de la Planta , Biomasa , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...